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In quantum chemistry one needs expansions of orbitals and operators, defined with respect to 
one origin, about another origin. Because there is no straightforward method of obtaining such 
expansions, it is helpful to interpret them as translations of fields. The connection between translations 
and rotations of fields with the transformations of functions is considered. Of special physical interest 
are expansions in spherical harmonics, which have the form of an addition theorem. General properties 
of such expansions and possible methods to derive them are discussed. 
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1. Introduction 

In molecular theory, many problems become soluble only if certain 
mathematical functions which occur can be expanded about various origins 
which are usually chosen to be the centers of atoms in molecules or crystals. 

Since the wave functions used to describe a molecular system depend in a 
complicated manner on the coordinates of its electrons and nuclei, and since the 
energy and other quantities are determined by the structure of the system, the 
difficulty of a problem depends in a very sensitive way on the positions of the 
atomic centers and how they are mathematically taken into account. In order to 
make calculations feasible, one often wants to have expansions of the wave 
functions with respect to certain centers. For instance, such expansions are helpful 
or necessary for the calculation of matrix elements with a non-Gaussian basis set 
which has to be used if the exact behavior of the wave function near a nucleus 
or at long distances is important. These expansions are especially helpful for 
the evaluation of matrix elements which occur in the calculation of molecular 
properties such as electric multipole moments, diamagnetic susceptibilities, 
electron-proton hyperfine interaction, chemical shift, nuclear quadrupole coupling, 
and electron spin-spin and spin-orbit coupling. However, the expansions can also 
be applied to many other problems which one encounters, for instance, in the 
theory of phase transitions, in the theory of molecular interactions, and many 
other fields of chemical and mathematical physics. 
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In quantum chemistry, expansions in spherical harmonics are of special 
interest because the spherical harmonics, being solutions of the angular wave 
equation of the atomic Kepler problem, appear in many problems and quantities 
of quantum chemistry. For instance, they are contained in spherical Gaussian- 
type as well as Slater-type atomic orbitals. In addition, many operators may be 
expressed by or are closely connected to spherical harmonics. In fact, the operator 
(e2/r12) of the electrostatic interaction of two electrons provides the generating 
function of the Legendre polynomials. Hence, this important operator yields the 
most fundamental expansion in spherical harmonics. Furthermore, the spherical 
harmonics have the great advantage that their transformation properties under 
rotation are well known. This fact is helpful in many respects. For example, it 
enables one to use various atomic coordinate systems, which may be rotated with 
respect to each other, in order to simplify calculations. 

It is clear why the spherical harmonics occur so often in quantum mechanical 
problems and why their behavior under rotational transformations has been 
well understood since the early days of quantum mechanics [1-3]. They are 
eigenfunctions of L 2 and Lz, where L is the angular momentum operator. The 
importance of central potentials and the conservation of angular momentum 
in many quantum mechanical problems prompted a thorough investigation of 
the mathematical tools needed to treat such problems [4-9]. It was fortunate 
that the solution of the differential equation which occurs was well known from 
potential theory. 

In contrast, the conservation of linear momentum neither raised many 
questions nor could it be used extensively to simplify the problems. Usually, the 
only advantage was the fact that it allowed the separation of the wave equation 
of, say, a molecule into one which represents the translational motion of the 
molecule as a whole and another one which represents the relative motion of the 
particles, described by coordinates in the center-of-mass system. This may be 
the reason why the theory of angular momentum and, thereby, the theory of 
transformations of spherical harmonics under rotations has been much further 
developed than mathematical problems which are related to the translation of 
functions, for instance spherical harmonics. 

The spherical harmonics are the basis functions of the irreducible representa- 
tions of the three-dimensional rotation group. Plane waves are the basis functions 
of the irreducible representations of the pure translation group. Since the transla- 
tion group is Abelian, it is simpler to translate a plane wave than it is to rotate a 
spherical harmonic. However, the equivalent transformation of functions which 
are not basis functions of the respective irreducible representations is much more 
difficult and still unsolved for many types of functions. 

If the transformed function is expressed in terms of given functions which 
form a complete set, the expansion coefficients can in most cases be obtained in 
an explicit form only with great difficulty or not at all. But without knowing the 
exact expression of the expansion coefficients, an expansion is useless for practical 
purposes. 

The translation of a function means, in fact, the expansion of a function 
about another origin. Because of the reasons mentioned above, it is desirable 
to have expansions of general functions about a new origin such that the 
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orientational dependencies of the expansion terms are expressed by spherical 
harmonics. Unfortunately, also in this case great difficulties must be surmounted 
in order to derive such expansions. If an expansion for a certain class of functions 
can be given, it provides a new relationship which can be used in many contexts. 

Since Hobson's [10] pioneering work on "The Theory of Spherical and 
Ellipsoidal Harmonics", several investigations were concerned with the pos- 
sibility of obtaining such expansions, as will be discussed later. It appears that 
the class of functions, which can be expanded with the least amount of difficulties, 
encompasses the regular and irregular solid spherical harmonics, which are 
defined by rLyLM(o, C~) or r -L-1  yM(O, qS), respectively, if r, 0, q~ are the spherical 
coordinates of a field point and Yff(O, (o) is a surface spherical harmonic. As has 
been shown recently [1 la, 1 lb], for these functions not only translation formulas, 
but also multicenter expansions can be derived if certain conditions are obeyed. 
These relationships allow the expansion of a solid spherical harmonic, which is 
defined with respect to a given origin, in terms of other solid spherical harmonics, 
which are defined with respect to other centers. 

It would be desirable to have such multicenter expansions for any function 
of interest in quantum mechanics. Since a general analytical function can be 
expanded in a series of functions rNYM(O, q~), a step in this direction is to look for 
expansions of functions of this kind. It can be shown now, that for functions 
r N yM(O, (o) with arbitrary N such multicenter expansions do exist [12 3. Moreover, 
such multicenter expansions do also exist for several other functions which are 
products of a surface spherical harmonic and another function belonging to the 
class of special functions, e.g. a spherical Bessel function, a spherical Neumann 
function, or a spherical Hankel function. But also plane waves, spherical waves, 
Yukawa potentials etc. may be shown to fulfill equivalent relationships [13]. 

Some of the one- and two-center expansions mentioned above have been 
treated in the literature in the past, as will be discussed at the appropriate places. 
Even in these cases, however, new derivations and more compact results, more 
suitable for practical applications, can be given. In addition, we can show how 
all expansions are related to each other and that they can be described by a 
uniform theory. Only this makes it possible to derive the various multicenter 
expansions, which was not recognized until now. 

In order to obtain these expansions, one must first clarify the problem of the 
one-center expansions in detail and provide the mathematical tools for the 
treatment of the two-center expansions as the next step. Previously it was not 
possible to derive two-center expansions of rNyM(o, Oh) for all values of N and 
for all regions of space, let alone multicenter expansions. It can be shown, however, 
that for each point in space one can arrive at two-center expansions, and that, 
for instance, a generalization of the bipolar expansion is possible [12]. This 
treatment finally leads to the multicenter expansions. 

The present paper is the first in a series of articles which deal with new deriva- 
tions and relationships describing the translation of fields. For this purpose it is 
important to clarify the general concepts of the translational transformation of 
functions, which will be done in the present article. Because it is helpful to consider 
some of the analog!es between rotations and translations of functions, trans- 
formations under rotation will be discussed briefly in the next paragraph. On 
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this basis the general formalism of transformations under translation will be 
discussed in the following section. This finally allows the consideration of different 
methods for obtaining expansions in spherical harmonics which may be used or 
which were applied by various authors. 

2. Transformations under Rotation 

An orthogonal reference system may be defined by the unit vectors el, e2, e3 
pointing along the x-, y-, or z-axis, respectively. The direction of the unit vector 
Q = r/r, which connects the origin of the reference system with a certain point on 
the unit sphere, is determined by the polar angle 0 and the azimuthal angle 49, 
denoted by (0, 49). If one wants to emphasize that the coordinates are defined 
with respect to e 1, e 2, e3, one may write (e; Q) instead of (0, 49), where e represents 
e~, e2, e 3. 

The original reference system e~, e2, e3 may be rotated by Eulerian angles 
~, fl, 7 into a new reference system el, e2, d3 with the same origin. The unit vector #, 
which had the spherical coordinates (0, 49)=(e;fi)in the original frame and did 
not move, has then the spherical coordinates (0, 49)= (d; e) in the new frame. 

The operator ~ rotates a vector or, as could be said, the entire coordinate 
space by the Eulerian angles ~, fl, ?. Hence, if ~ operates on the basis vectors, it is 

~e~= ~,= ~=1Ri i (  c~, fl, ?)ej, i=  1, 2, 3. (2.1) 

The operator ~ induces a rotation matrix with elements R;j which, however, 
will not be used here. 

A field in three-dimensional space is given by a function f (r ,  0, 49). Because 
the r-dependence is irrelevant to rotations, it is sufficient to consider a function 
which is defined on the unit sphere. This function may be written as f(O, O) or f(Q), 
if it is well understood which reference system is used. Here this notation refers 
to the system el, e2, e 3. More clearly, one may write 

f(O, 49) =f(Q) = f ( e ;  Q). (2.2) 

Of course, a simultaneous rotation of the position vector Q and the basis vectors 
has no effect, i.e. 

f (e ;  Q) = f ( ~ e ;  NO). (2.3) 

The new coordinates (0, q~) may be introduced into the function f ,  leading to 
f(0, q~). If now the new coordinates are expressed by the old ones, a new function F 
will emerge, i.e. 

f(O, (a) = F(O, 49) (2.4) 

o r  

f(g;  Q)= F(e; #). (2.5) 

The new function will be denoted by (Paf) .  Hence 

f (~e;  e) = ( P a f )  (e; e). (2.6) 
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If one considers the vector ~Q instead of Q, it follows with use of Eq. (2.3) that 

f (e ; ~) = f i e f ( e ;  ~Q) (2.7) 

or with Eq. (2.2) 

f(Q) = Pef(~Q)  �9 (2.8) 

The "new function" has the same value at the point ~Q as the "old function" has 
at the point ~. This means, the operator fie causes a positive rotation of the field. 
The transformation generated by N in coordinate space induces a transformation 
generated by fie in function space. 

The most important functions defined on the unit sphere are the spherical 
harmonics. In Condon-Shortley phases [14] the surface spherical harmonics are 
defined by 

YML(O, ~b) = ~7'(~) eim+(2rt) - t/2 (2.9) 

with 

~=cos0,  -1<~__<1, (2.10) 

/=0,  1,2,3 . . . . .  - l< -m<- l .  (2.11) 

The 5a7'(() denote the normalized associated Legendre functions 

~?(~) = ( -  1)"NT'P~(0 (2.12) 

with the normalization constant 

N,~=[21+ l ( l -m) ' ]  1/2 
2 ( l+m).  " (2.13) 

The unnormalized associated Legendre functions are given by 

PT'({) = (1 - {2)"/2(d/d~)'+ m ( ~ 2  __ 1)'/2'I!. (2.14) 

Setting m = 0  yields Rodrigues' formula for the Legendre polynomials 

P,({) = (2'1!)- l(d/d~)'(~2 - 1)'. (2.15) 

The rotation operator/3 e should not be confused with these symbols. 
The spherical harmonics are the basis functions of the irreducible representa- 

tions of the three-dimensional rotation group. Under the rotation defined by the 
Eulerian angles a, fi, 7, they transform according to 

Fe vT(o, 4,)= YT(O, Y/,., "' = -z Y~ (0, qb)D~}~(cq fi, ?) (2.16) 

see, e.g., Ref. [-63. This may be written as 

P e YT(e ; ~) = Y'~(e ; ~ - 1  O) = ~,~, = - ,  YT" (e ; Q) D~}m(J/) �9 (2.17) 

Hence, the rotated function /3eYe" is given by a linear combination of the un- 
rotated functions YT". The coefficients D~},,(~2) of this finite expansion are the 
elements of the rotation matrices, which will not be given here. 
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Since the spherical harmonics define a complete set on the unit sphere [15], 
a function f(O, qb) may be expanded according to 

__ ao l m m f(O, ~b)- ~ =  o ~.m= _~C~ Yz (0, ~b), (2.18) 

if one is able to determine the coefficients 

m* C~' = S2~d(a~dOsinO f (O, (o) Yi (0, c~). (2.19) 

A rotation of the function f(O, c~) may be accomplished by rotating each surface 
harmonic of the expansion. The equivalent procedure may be applied to functions 
f(r). Then, the C7' become functions CT'(r). 

3. Transformations under Translation 

3.1. The Translation Operator 

A rotation can be defined by Eulerian angles which allow the final position 
of a rotated reference system to be determined with respect to its original position. 
The origin remains fixed. 

A translation is defined by a vector R which connects the origin 0 of a reference 
t ! ! system e~, e2, g3 to the origin 0' of another reference system el, e2, e 3. Each axis e i 

is chosen to be parallel to the corresponding axes e i, i = 1, 2, 3. Hence, the second 
reference system is obtained by shifting the first reference frame e 1, e2, e a along 
R and keeping the basis vectors unchanged. The two "parallel" systems differ 
by a "parallel displacement" only. 

I fa  field point P has the coordinates x, y, z or r, 0, ~b, respectively, with respect 
to the reference system el, e2, e3, the same field point P will have the coordinates 

t t ! x', y', z' or r', 0', ~b', respectively, with respect to the reference system el, e2, e 3. 
In vector notation, this means (see Fig. 1) 

r ' = r - R .  (3.1) 

With these definitions, a function f (r ,  0, ~b) defines a certain field. If the coordinates 
r', 0', ~b' are formally introduced into the function f and subsequently expressed 
by the coordiantes r, 0, ~b, a new function F will emerge: 

f (r', 0', eb')= F(r, O, (a) . (3.2) 

P 

F' $'3 

e3 

/0 ~2 

F i g .  1 
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Using Eq. (3.1) and denoting the new function F by (/3j),  this may be written as 

f ( r -  R)= P~f (r) (3.3) 

or 

f (r) = P , f  (r + R) . (3.4) 

The "new function" has the same value at the point defined by the local vector 
(r +R) as the "old function" has at the point P defined by r. Hence, the operator /3 
causes a translation of the field by R. Defining an operator 3- such that 

3 - r = r  + R ,  (3.5) 

Eq. (3.4) may be written as 

f (r) = P~f (3- r) . (3.6) 

which corresponds to Eq. (2.8). Since all functions are defined with respect to 
"parallel" reference systems, it is not necessary to specify the reference system in 
the argument as it was done, for instance, in Eqs. (2.2)-{2.7). In fact, any vector 
may be shifted arbitrarily in space if its length and direction remain unchanged. 
Therefore, one can assume that all vectors which occur originate at the origin 0 
of reference system el, e2, e3. This is also the reason why the operator 3- causes 
an addition of R to a given vector whose translation is arbitrary anyway. In this 
respect, 3- cannot be compared with N, because N produces a rotation of a 
vector just a s / 3  produces a rotation of the field. 

The translation operator /;~ can be specified with the help of the Taylor 
expansion 

f ( r  - R) = ~2~ o (t !)- 1(_ g . t?/O r)t f (r) . (3.7) 

If this relation is compared with Eq. (3.3), it follows 

/3 = exp( -  R. ~/0r). (3.8) 

It may be noted that application of this operator to a plane wave exp(ik �9 r) yields 
exp[ik �9 (r -R) ]  because ik is the eigenvalue of O/t?r. The last two relations Eqs. (3.7) 
and (3.8) show that the mathematical representation of a translation defined by 
Eq. (3.3) can in fact be considered as an expansion about another origin. 

3.2. Separation of Variables 

For practical applications it is desirable to represent the translated function 
_P~f(r), which is equal to f ( r - R ) ,  by an expansion of the form 

f (r - R) = E ,  ~v C,vgu(r) h~( R) (3.9) 

with certain functions g, and h~, where each function in the expansion terms 
depends on one vector only. Then the variables r and R are separated. 

For a given displacement vector R one m a y  write the expansion Eq. (3.9) in 
the following form 

f (r -- R) = ~u K,(R) gu(r), (3.10) 
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where 

Ku(R) = ~ Cushy(R). (3.11) 

If the functions •(r) form a complete orthonormal set, which means 

~ .  g*(rl) g.(r2) = fi(rl - r2), (3.12a) 

drg*(r) 9u(r) = ~ , ,  (3.12b) 

then Ku(R) is given by 

Ku(R) = ~ drg*(r) f ( r -  R) . (3.13) 

If also the functions hv(R ) form a complete orthonormal set, the coefficients C~v, 
which do not depend on any vector, are given by the two-center integral 

Cu~ = ~ dR ~ drg,(r) h*(R) f (r - g) . (3.14) 

For practical purposes, one needs more than a separation of the argument 
vectors r and R. In fact, it is important that the radial and angular dependencies 
also be separated. This can be achieved if an expansion in spherical harmonics 
can be given according to the following formula 

f ( r - -R )=  ~,klhm~ Zk2t~,~2 ckl~l,,:m~Uk~(r)Y~(r/r)vk~(R) Y~2(R/R) �9 (3.15) 

Unfortunately, the functions Uk,(r) and Vk~(R) can be obtained in closed form only 
for a few special classes of functions f ( r -  R). 

3.3. Translation of the Coulomb Field 

The translation of the Coulomb field represented by an expansion in spherical 
harmonics will serve as a starting point for the following derivations. The field 
of a unit charge in the origin 0 of the reference system el, e2, e3 (see Fig. 1), is 
rotationally invariant. The potential in the field point P is 1/r. The translation 
of the unit charge causes a translation of its field. If the unit charge is shifted 
from 0 to 0', its potential in P is 1/r'. The potential 1/r' is the generating function 
for the Legendre polynomials according to 

1/r' = (r 2 + R 2 _ 2rRcosco)- l/2 = ~ =  o rt< r~ t- 1Pl(cosco) ; (3.16) 

r < = Min(r, R), r > = Max(r, R), (3.17) 

where co is the angle between r and R, 

rRcosco = r . R .  (3.18) 

The finite expansion 

Pl(cosco) = 47z(2l + 1)-1 ~ = -i Y'~*(r/r) YT'(R/R) (3.19) 

is valid in any coordinate system with origin 0, for instance el, e2, e3 of Fig. 1. 
Introducing it into Eq. (3.16), yields 

l l/[r - R[ -- 4re ~ ,  = o ~r, = -t (21 + 1)- lr~< r ;z-1 Y'~*(r/r) Y'f(R/R). (3.20) 
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This relation, which is a special case of Eq. (3.15), illustrates not only the physical 
meaning of the translation of the field by R, where R connects 0 to 0'. It also allows 
a physical interpretation of the "expansion about  another origin" which stands 
for 1/r': The potential of the translated unit charge measured at the point P can 
be represented by the sum of the potentials of all multipoles in the origin 0. 

This example shows also that the spherical harmonics, which are closely 
connected to rotations, are also connected to translations. Because the simplest 
harmonic P~ is generated by a translation of l/r, it is probable t ha t  translated 
functions of a more complicated form, e.g. r N, can be represented by an expansion 
in spherical harmonics such that the radial functions Uk, and vk2 of Eq. (3.15) can 
be determined explicitly. 

An addition theorem such as Eq. (3.19) allows a function which depends in an 
arbitrary way on two vectors to be expanded in terms of functions which depend 
on one vector only. Therefore, the translation formulas Eqs. (3.9) and (3.15) are 
special kinds of addition theorems, i.e. those for functions f ( r - R )  which depend 
on the sum of the two vectors only. 

For  a certain translation of a field by a vector R, this vector R is a constant 
in the appropriate  translation formulas as Eqs. (3.9) and (3.15). In these formulas, 
however, the vector R as well as the vector r can be considered as a variable, since 
any translation is possible. For  symmetry reasons r can be called ra, and R can 
be called r z. Then a translation formula like Eq. (3.9) or Eq. (3.15), respectively, 
becomes in fact a one-center expansion because f ( r  1 - r2)  is expressed by functions 
which are defined with respect to the same origin 0. If the renaming of the vectors r 
and R is done in Eq. (3.20), this formula becomes the Laplace expansion for the 
Coulomb energy 1/r12 of tWO unit point charges at the position ra and r2, re- 
spectively. This is another  interpretation of the formula Eq. (3.20). 

3.4. Translations of Scalar and Non-Scalar Functions 

Scalar functions f ( r )  and general functions f(r), which depend on the direction 
of r, have different transformation properties under translations, which become 
apparent  if the z-axis coincides with one of the vectors r> or r<, respectively. Two 
cases are possible 2: In case A the z-axis of a coordinate system ~ coincides 
with r< and the z-axis of another reference system ez a coincides with r>. In case B 
the system ef has its z-axis in the direction of r>, whereas the z-axis of system 
e~ coincides with r<, see Fig. 2a and b. Because of YT'(0, r  [(2l+ 1)/4/~]t/2~m,o, 
the expansion given by Eq. (3.15) can be written in case A as 

e A .  f (  i ,  r ' )=  ~l,, ,  Ai,m(r>, r<) YT(co, qS), (3.21a) 

in case B as 

f (e f ;  r ' ) =  ~1,,~ Bi,,,(r>, r<) Y~'(co, 4)) (3.21b) 

1 In the foregoing, the lower index i of e i was used to distinguish the three different axes of a 
reference system. However, in this Section 3.4 only z-axes are considered. Here the lower index i of e~ 
was redefined to specify two different coordinate systems with the same origin, but different z-axes: 
i= 1 or 2. In addition, two cases are considered with K=A or B as defined above. 
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F' 

case A case B 

Fig. 2a and b 

with i= l, 2. Here, the notation of Eq. (2.2) is adopted. Of course, ~b =qg' and 
(co,~))=(e~;r<)=(e~;r>) with K = A , B .  The vectors r> and r< include the 
angle e~. With 

(e A; r') = (e2B; -- r ') ,  (e J; r') = (el; -- r ') ,  (3.22) 

it follows from Eqs. (3.21a) and (3.21b) that the radial functions obey the conditions 
A 1 - B  2 and A z - B  1 Because 

1 , m - -  l , m  l , m  - -  l , m "  

A. , a. (3.23) r )#(e2, r'), (el,  r ) # ( e  2, r ') ,  (elB; , e. 

one obtains A~m # A2m, B~m # B2m, A 1 # B~m, and A,2m # B2 m. , , , , l , r a  , 

Therefore, the transformation of a general function f(r) under translations 
by arbitrary distances R in the direction of R is described by two different formulas. 
The z-axes of the reference systems e A or ef may be chosen to coincide with R. 
If R < r ,  which means R=r< and r=r>, the expansion Eq. (3.21a) is valid. If 
R>r,  hence R=r> and r=r<, the different expansion Eq. (3.21b) describes the 
translation. 

For  scalar functions one has f (r ' )=f(e~;  r') for arbitrary i and K. Therefore, 
it follows from Eqs. (3.2la) and (3.21b) that Ai, m=B].m for any i , j= 1, 2, which 
means that the two expansions are identical. 

4. Methods for Obtaining Expansions in Spherical Harmonics 

4.1. Fourier Transformation 

Plane waves exp(ik, r), which are the basis functions of the irreducible re- 
presentations of the pure translation group, transfer simply as 

p~elk'v = eik'(,-1~) " (4.1) 

In this case, the operator can be represented by 

/3 = e-ik. R (4.2) 

There are, however, only a few classes of functions with well-known translational 
transformation properties. 
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A function may be represented by a Fourier integral 

f ( r )  = (2re)- 3/2 S d k f ( k )  eik'" , (4.3) 

where 

f ( k )  = (2~z)- 3/2 ~ d r f ( r )  e- ik .r .  (4.4) 

In a sense, these two relationships correspond to the two expressions Eqs. (2.18) 
and (2.19), because both sets of equations define an expansion with respect to the 
basis functions of the irreducible representations of the respective symmetry 
groups. If the opera tor /3  is applied to Eq. (4.3), one obtains the following expres- 
sion for the translated function at the point P, which is defined by r in the reference 
system e 1, e2, e3, 

/3J(v) = (2re)- 3/2 ~ dk ]'(k) eik "('- m . (4.5) 

For applications it is necessary to obtain expressions for the translated 
function where the variables represented by the argument vectors r or R, re- 
spectively, are separated. This is the case for the integrand of Eq. (4.5). This is also 
the case for the whole integral if f (k)  is a delta function, i.e. if a plane wave is 
translated. Then Eq. (4.5) becomes Eq. (4,1). For more complicated cases, however, 
the evaluation of the integral, if it can be performed, will in general lead to infinite 
expansions. Therefore, instead of having the transformed function in form of an 
integral, it would be easier for possible applications to have an infinite expansion 
from the beginning. Then, this should be of the form Eq. (3.15). 

The relationship Eq. (4.5) can be expressed in a form similar to Eq. (3.15) by 
introducing the plane wave expansion [16] 

e ~k'" = 4re ~ =  o Z~= -z i~t(kr) Y'p*(k/k) Y~(r/r) (4.6) 

into the integral. This yields the formula 

f ( r -  R) = 4(2~z) 1/2 ~h,12 ~ . . . .  2 ( -  1) 12ih + '2 r ~ ( r / r )  

Y~2(R/R) I]l;~2(r, R) . (4.7) 

The expansion terms contain the integral 

I ,,,,m~h.t 2(r, R) - -~dkf(k) jh(kr) j i~(kR " " Yhml* (k/k) Y~2*(k/k). (4.8) 

Thejl are spherical Bessel functions. This expression was first obtained by Rueden- 
berg [17a] and independently by Silverstone [17b]. 

The Fourier transformation of a function in connection with Rayleigh's plane 
wave expansion Eq. (4.6) often fails to yield explicit coefficients because the 
integrals which occur cannot be evaluated analytically. If the Fourier transform 
does not exist in the usual function sense, one cannot even calculate the coefficients 
numerically. In such a case, one may apply the theory of distributions [18-20]. 
This was first done by Kay, Todd, and Silverstone [21], who also used this method 
for the evaluation of molecular integrals [22]. This method has the advantage 
that it allows the investigation of singularities. However, in most cases considered 
by Silverstone et al. [21], the integrals could only be transformed into new expres- 
sions which contained sequences of higher derivatives. Hence, they are not given 
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by explicit formulas, but instead by a prescription for obtaining them by executing 
all derivatives which occur. 

It turns out that the transformation under translations is more difficult than 
the transformation under rotations, at least if the angular dependence of the 
transformed function is to be expressed in terms of spherical harmonics. The 
plane waves are the basis functions of the translation group just as the spherical 
harmonics are the basis functions of the rotation group. The Fourier transforma- 
tion of a three-dimensional function, which can be interpreted as an expansion 
in plane waves, can therefore be compared with the expansion of a function on 
the unit sphere in spherical harmonics. If the coefficients of the last expansion are 
calculated, the problem of rotation is completely solved, i.e. the rotated function 
is also known as an expansion in spherical harmonics, which emerges from the 
application o f / 3  on each term of the original series Eq. (2.18). If the Fourier 
transform of a function is calculated, one also knows the "expansion in plane 
waves" of the translated function. However, one still does not have the desired 
expansion in spherical harmonics for the translated function, because the coef- 

mbm2 ficients I h,~ of the expansion Eq. (4.7) remain to be calculated. The integrals 
I"~];~ 2 can be evaluated only for certain classes of functions. There are other 

1 ,m2 functions for which they diverge. Furthermore, even if the ~,t~ (r, R) can be 
determined in an explicit form, the variables r and R cannot be separated in 
many cases. 

4.2. Derivations from the Differential Equation 

If F(O/Qrl) is an even or odd function of the operator 0/0ri, the identity 

F(O/Orl)f(rl + r2)-- F(O/Or2)f(rl + r2) (4.9) 

is valid, especially 

(3/Orl)2 f ( r l  + r2) = (O/Or2)2 f ( r l  + r2). (4.10) 

Sack [-23, 24] used this property for the derivation of certain expansions of the 
type 

f ( r l  + r2)---Etl Elz Era1 Emz R'~11:~:(rx, r2) Y~(r j rx )  Y~2(re/r2)" (4.11) 

For this Ansatz, the relationship Eq. (4.10) yields 

[0 2 2 0 11(11 ~ 1!] 
~r~ ~ R~:~:(rl' r2) rl Or1 r 2 ] 

= + - - .  R h,12 (rl, r2). (4.12) 
r~ ~r~ r~ 

ml,m2 All radial functions R h,~2 (rt,  r2) must satisfy this differential equation. In order 
to obtain an expansion Eq. (4.11) for a given function f ( r  1 + r2), it must be possible 

gtll,/n2 to specify the radial function R h,12 (rl, r2) -- for instance as a power series in r~ 
and r 2 - in such a way that first it exhibits the necessary properties, and that 
second its coefficients can be found by solving the differential Eq. (4.12). A leading 
coefficient depending on l~, 12, m~, m2 remains to be determined. This may be 
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difficult. For doing it, it may be helpful to draw some new information from the 
differential equation which is satisfied by f(r) itself. 

m l , m 2  Unfortunately, the radial functions R t1,~2 (rl, r2) can be determined by the 
method described above only for a few classes of functions f ( r l  + rE). Sack [-24] 
developed and used this method for the derivation of translation formulas for 
functions (r') N and (r') N. Yf(r'/r') with r '=  r - R .  

Some addition theorems derived from solutions of the differential equations 
of mathematical physics are given in mathematical textbooks, for instance by 
Watson [253 in connection with Bessel functions. 

4.3. Other Methods 

There is no general formalism which allows the representation of the translation 
of a field by an expansion in a series of given functions which form a complete 
set, e.g. spherical harmonics,/f one insists upon obtaining explicit expressions for 
the expansion coefficients of any order. Such explicit formulas are required for 
practical applications, for numerical calculations with any desired accuracy and 
for further analytical evaluations, for instance two- and multicenter expansions. 
In complicated cases, common procedures like Taylor or Fourier expansions 
often do not meet the requirements for practical applications. Since the Taylor 
expansion of a function is obtained by a repeated application of the operator 
( - R .  t?/Or) on that function, one may arrive at any higher coefficient of the 
expansion in successive steps. However, the explicit form of the general coefficients 
may often not be recognized. Moreover, the expansion will usually be given as a 
series not of the desired, but of different functions. 

If one tries to represent a translated field by an expansion in terms of given 
functions which form a complete, orthonormal set, see Section 3.4, one has to 
evaluate the integral Eq. (3.14) in order to obtain the expansion coefficients C,~. 
Because this usually cannot be done analytically, this method cannot be applied 
in most cases. 

Using a double Bessel integral transformation, which is closely related to the 
Fourier transformation, in connection with the differential Eq. (4.12), Rafiqullah 
[26] rederived Eq. (4.8) for scalar functions. 

Unfortunately, most methods discussed so f a r  are not suitable for general use. 
This may be the reason why for nearly every one of the few functions, whose 
transformation properties under translation were considered in  the literature, 
a different method for obtaining the expansion Eq. (4.11) was used. 

It is intended to give new expansion theorems for different classes of functions 
in forthcoming articles. Those special methods for obtaining expansions in 
spherical harmonics, which are not discussed above, will then be considered at 
the appropriate places. However, for the new derivations to be given, a "direct 
or analytical" method will be employed, which utilizes only properties of the 
special functions and common procedures of analysis. Although group theory 
or tensor algebra could be very helpful during the course of this investigation, it 
appears that a completely analytical approach to the problem of determining 
the functions Uk~(r ) and VkE(R ) of the expansion Eq. (3.15) is advantageous. First 
it allows the application of the same formalism for the derivation of the various 
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relationships in order to make evident the connections between all the different 
expansion formulas that will be given. The physical meaning of the manipulations 
remains clear because properties of the surface spherical harmonics, which are 
eigenfunctions of L 2 and Lz, are widely used. Secondly, it allows the final rela- 
tionships to be cast in a form which is immediately applicable to practical 
problems. 
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